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ABSTRACT.  This working paper proposes a new type of algorithm
for the discovery of invariant, higher-order concepts in variable, noisy
data. The algorithm is novel in that it is based on the unlimited
addition of nodes and links to a recurrent connectionist network.
Nodes are created to represent patterns of co-activation of existing
nodes that are not sufficiently accounted for by existing nodes. This
allows the system to produce novel concepts or degrees of freedom
that capture the complex correlations over time and/or space of the
activations of different sensory elements. The strengths of the links
connecting all the nodes in the network (newly created as well as
initially given) are determined according to a Hebbian or Delta learning
algorithm, thus guaranteeing a network architecture that constantly
adapts to its experiences. The paper sketches various potential
applications, e.g. in text comprehension, clustering of scientific papers,
and situated learning, that can be used to test and optimize the
proposed algorithm.

Introduction

There is a fundamental unsolved problem in cognitive science, and science in general: the

modelling of creative change; more specifically, the emergence of truly novel concepts.

By concept, I mean one of the basic distinctions or dimensions of classification, such as

light-dark, warm-cold,  bird-non-bird, or alive-dead, that we use to organize our

experiences. The order imposed by a concept can be discrete (either something is alive,

or it is not), in which case we may call it a distinction, or continuous (something can be

more or less warm), in which case we may call it a dimension. In either case, a concept

determines a new variable or degree of freedom, since we now have become aware that

phenomena can vary in this respect, e.g. being more or less warm, or either alive or dead.

A novel concept is a degree of freedom that cannot be reduced to a straightforward

logical or mathematical combination of existing variables or distinctions. For example, we



might define "purpleness" as a linear combination of "blueness" and "redness", or

"volume" as the product of "width", "depth" and "height", but we cannot reduce

"birdness" to a formal combination of other features: a bird is a bird, and not just a

warm-blooded, egg-laying vertebrate. At best, existing scientific methodologies allow us

to decrease the number of degrees of freedom, thus extracting the most important

variables or concepts from a mass of mutually dependent variables. An example of such

a method is Principal Components Analysis (a type of factor analysis), a statistical

technique that allows you to derive the dimensions  that are most important to explain

the variation within a large amount of data.

In practice, new scientific concepts are generated purely by the scientists

themselves, with very little help from formalisms or methodologies. It is clear that our

brain is able to make creative inferences, coming up with concepts and constructs that

put problems in a wholly different light. This often allows us to see connections

between apparently disparate features and to simplify our models so that suddenly

everything seems to fall into place. This ability suggests that we may be able to grasp

the process of concept discovery by examing the functioning of the brain. Neural

network models of brain functioning are indeed capable of impressive feats, such as

learning new connections, extracting higher level patterns, and even performing the

equivalent of principal components analysis [McLeod et al., 1998]. But, like all

scientific formalisms until now, they can only reduce degrees of freedom, extracting the

core variables from a mass of given variables; they cannot create independent variables.

This is not surprising if we look at the basic components in a neural network: nodes and

links. Both nodes and links are given by the designer; the network can only change the

weights of the links.

In earlier research [Heylighen & Bollen, 2002], I have proposed connectionist

models in which links can be created or destroyed, or nodes can be merged [Heylighen,

2001] making the model potentially more creative. But link creation could be seen

merely as a variation of the classical connectionist model, in which links are represented

as weights in the matrix of all possible connections between nodes, with “no link” being

equivalent to “weight = 0”. Creating and destroying links is then not much more than

allowing weight changes to pass through 0.

The present paper proposes a new paradigm that goes one step further: it moreover

allows the creation of nodes. A node in a connectionist network essentially represents a

degree of freedom, since it is characterized by its level of activation—which can either

vary continuously (e.g. between 0 and 1), or discretely (e.g. switching between the

binary states “on” and “off”). Since the matrix of cross-connections is defined by the

nodes, changing the number of nodes necessarily makes you “jump out of the system” ,

i.e. it requires the definition of a new matrix.

However, unless we want nodes to be merely added at random, resulting in degrees

of freedom that are meaningless because they do not connect to existing concepts, we



will need a new “system” to organize the nodes. The idea is that concepts would be

created in an intelligent way, with the new variables as much as possible grounded into

already understood variables, while still providing an unlimited scope for novel insights.

The system I propose here is based on an extension of the Hebbian algorithm, which has

proved to be so powerful in directing link creation and adaptation, to the creation of

nodes. In a nutshell, a node will be created to represent the co-activation, over space

and/or time, of a cluster of existing nodes, linking into each member of the cluster with a

link weight proportional to its degree of activation. Each subsequent activation of all or

some of these nodes will lead to an update of the input links, strenghtening or weakening

them as the case may be. As these links define the new node’s meaning or role within

the network, this continuing update will make the node increasingly better at

representing frequent combinations of experienced phenomena.

Note that this procedure could be viewed as an extension of Hebbian learning to

hypergraphs. In a traditional network or graph, a link connects one node to one other

node. In a hypergraph, a single link can connect a collection of nodes to a collection of

other nodes. The new nodes created by the proposed algorithm could be seen as such a

hyperlink, providing a bridge between a collection of frequently co-activated input

nodes and a collection of output nodes. Thus, "node learning" could be seen as a form of

"hyperlink learning", where the hyperlinks connect collections of existing nodes.

It must further be noted that this is certainly not the first proposal to develop a

neural network that can grow nodes rather than just links [Alpaydin, 1994]. However,

these earlier proposals remain within the traditional paradigm  of "feedforward" neural

networks, characterized by a linear sequence going from a given layer of input nodes via

one or more layers of "hidden" nodes, to the final layer of output nodes. New nodes are

typically added to the hidden layers, and can thus be seen as mere additional linear

combinations of the input nodes that may facilitate the preparation of the output

pattern. The present proposal assumes a freely structured recurrent network

architecture, without a priori distinctions between layers. This allows activation to cycle

without limit through the network before encountering any final "output layer", thus

making the network sensitive to patterns in time and not just in space. As will be argued

later, it is precisely the capturing of patterns in time that makes possible an unlimited

generation of new degrees of freedom.

Let us start by formulating the underlying algorithm in more detail.

Formal definition of network dynamics

Network structure and activation

Consider a weighted, directed network N = (V, L, W), where V = {v1, v2, v3, v4, ...} is

the set of nodes, L ⊂ V × V  is the set of links between nodes and W: L →  [0, 1]: (vi, vj)



 → w(vi, vj) = wij is the weight function with the associated weight matrix W = (wij).

We may assume that W is normalized like a transition probability:

Σ
j
 wij = 1

We moreover consider an activation function A that varies over time t ∈ T (which for

simplicity we assume to be discrete):

A: N × T → [0, 1]: (vi, t) → A(vi, t) = ai (t)

Activation can be split up into an external and an internal component, depending on

whether the activation originates outside or inside the network:

A(v, t) = Aext(v, t) + Aint(v, t)

Aext is determined by outside stimulation (e.g. nodes connected to sensors react to the

sensory input by becoming activated). Aint is the result of spreading activation, i.e. the

process by which activation internal to the network is passed on from node to node,

proportionally to the link weights:

aint j (t) = kΣ
i
wij.ai (t–1)

0 < k ≤ 1 is a damping parameter, which ensures that internal activation eventually

decays, so that the network would stop being active without external activation.

Link learning

Link weights will adjust to the flow of activation through the network. We can use two

basic type of algorithms to control the changes, Hebbian and delta. In the Hebbian

algorithm, link weight is incremented with a small amount each time both linked nodes

are active together (co-activation), and this proportionally to the strength of activation

in each node:

wij (t+1) = wij(t) + c.ai(t).aj(t)

0 < c ≤ 1 plays here the role of a learning parameter. The higher c, the bigger the

influence of the most recent activation on the weights (and therefore the weaker the

influence of earlier rounds of learning). With this rule, weights can only increase but if

we moreover take into account the requirement of normalization of weights, it implies



that links between nodes that were not co-activated (or whose co-activation value was

low) will become less strongly connected relative to those that were.

The delta rule takes into account the difference between external and internal

activation, assuming that external activation represents the external situation as it is,

whereas internally generated activation is merely an attempt to anticipate the true

situation, and therefore may need to be corrected. This correction takes place by

adjusting the link weight so that the internal activation it generates comes closer to the

external activation it received:

wij (t+1) = wij(t) + c. ai(t). (aext j(t) - aint j(t))

Note that wij remains the same if internal activation equals external activation, meaning

that the network perfectly anticipated. Also note that with this rule co-activation can

lead both to an increase or to a decrease of the weight, thus resulting in a more fine-tuned

correction.

However, this classic form of the delta rule has the shortcoming that it cannot be

applied to nodes that do not receive external activation, and these are precisely the

"higher order concept" nodes that we are interested in. An extension in that case would

distinguish not between externally and internally generated activation, but between

activation flowing through this link (internally), and the whole of activation flowing

through other, indirect links (internally and/or externally). This results in the  following

adjustment of link weights:

wij (t+1) = wij(t) + c. ai (t). (a j(t) – ai(t–1).wij(t))

Creation of nodes from activation clusters

At each moment t, a limited cluster C(t) ⊂ V of nodes will be significantly activated:

C(t) = {vi ∈ V| A(vi, t) > a0}

where 1 > a0 ≥ 0 is a threshold parameter which we can choose so that the cluster is not

too large. The nodal growth algorithm will now at each moment t add a new node c to V,

and the corresponding (bidrectional) links {(vi,c),(c,vi,) (| vi ∈ C} to L. These new links

will have the weights:

W(vi, c) = W(c, vi,)) = A(vi, t) = ai (t)

The new node can be represented in vector form as a list of its input weights:



ci = W(vi, c), i = 1, ... |V|

This is the basic algorithm which at each moment adds one node and several weighted

links to the network.

Note that it is important to choose the threshold a0 well in cases where many nodes

are simultaneously activated, and where many subsequent activation patterns are

encountered, because in that case the number of clusters to be considered may grow

exponentially with the number of nodes. Assuming the worst case scenario that

subsequent activations are independent and of unlimited extent, the total number of

possible clusters, and thus of new nodes, will be of the order of 2|V|. In reality, we can

assume that the great majority of potential combinations of node activations will never

occur, but this will depend on the amount of regularity or redundancy in the domain,

which can only be ascertained by testing the data from that domain.

To avoid an explosion in the number of potential nodes that need to be considered,

we can replace the threshold  a0 by a simpler limit on the number of nodes that can make

up a cluster: e.g. only consider clusters of maximum size 5. This does not necessarily

limit the maximal complexity of novel concepts that can be generated in this way, as the

algorithm works recursively, and thus will also consider clusters of nodes that already

represent a 5-node cluster, and thus be able to generate 25-node clusters, 125-node

clusters, etc. This strategy of building hierarchical complex systems by recursively

combining small assemblies is a fundamental mechanism in problem-solving and

evolution [Simon, 1969].

Moreover, in order not to let the network grow too big, adding lots of nodes that are

mostly the same in their linking pattern, we should add the restriction that the node to

be created should be sufficient novel. The idea is that nodes only need to be created to

capture configurations of stimuli that cannot be reduced to already existing linking

patterns. To quantify this requirement, we can use the cosine similarity measure

between the activation vector (ci' (t')) representing the new cluster of activation C(t'> t)

and the one (ci (t))  that had been captured earlier:

sim(c,c' ) =
cic' i

i
∑
ci

2 ci'
2

i
∑

i
∑

Note that sim(x,y) = 1 iff x and y are equal (or proportional), and sim(x,y) = 0 iff x and

y are orthogonal. If we now define a similarity threshold 0 < s < 1, then the novelty

condition for node creation can be formulated as:

if ∃ c such that sim(c,c') > s,  then do not create a new node c'



A quick way to check this condition is to let activation spread from the activation

pattern c' for one step. The node that gets the highest activation is the one most similar

to the potential new node, and therefore we only need to check for this node whether

the similarity remains below the threshold. This leads us to another interpretation of the

novelty condition: new nodes are created whenever there is not any single existing node

that can satisfactorily account for the activation, in the sense that it will attract or

absorb a significant part of that activation in a single step.

To further avoid combinatorial explosion, we must put a final restriction on the

number of newly created nodes. After the creation of a node c, the system may

encounter hardly any activation pattern able to activate its input links sufficiently for it

to become significantly activated. In that case, Hebbian or delta learning will gradually

weaken the incoming links (vi, c) , until the node hardly receives any input at all. Once

the total incoming strength has fallen below a certain threshold 0 < b << 1, we may

decide to eliminate the node and its corresponding links:

if Σi W(vi, c) < b, then erase node c

This mechanism will regularly prune the network to eliminate spurious clusters of nodes

that may have appeared once, but don't have any predictive power. For example,

consider a system learning new words by creating nodes for the combinations of letters

it encounters. Some of these combinations (e.g. misspellings) will be meaningless, and

therefore should be erased if nothing similar to them is encountered in a long while.

Further development of new nodes

As soon as a new node c is created, its links will start adapting, according to the Hebbian

or delta algorithms. This means that when c is (significantly) activated together with

some other node v, the links (v, c) and (c, v) will be strengthened. Simultaneously, links

with nodes that are not simultaneously active will weaken and eventually disappear.

This means that the linking pattern of c will increasingly start to reflect the most

common patterns of activation.

Suppose that our network represents the brain of a young child which for the first

time sees a bird, say a robin, which eats some grains and then flies away. Already

known features, such as "has two legs", "flies", "eats grains", "has a red breast", "has

two eyes", "is small", etc. will be activated. Assume that none of the already existing

concepts, such as "dog", "person" or "toy", is similar, i.e. has largely overlapping

features. The child will therefore create a new concept node, which we will call "bird".

This concept is defined by all and only the features of that first perception, with the

same relative strength as the impression they made at that moment.



Suppose that a little later, the child perceives another bird, say a blackbird eating a

worm. Many of the same features will be activated, e.g. "two legs", "flies", "small", ...

This means that there is sufficient similarity with the previous experience to map these

on the same concept, rather than creating a new concept node. But the similarity is not

perfect: "red breast" and "eats grains" are no longer activated, "small" has less activation,

and "black" and "eats worms" are this time activated. Because of learning, the linking

pattern defining the bird concept will now adjust to take these differences into account:

the connections with "flies", ... are strengthened, those with "red breast", ... are

weakened, while connections to "black", ... are added. What remains is a linking pattern

that neither fully represents a blackbird, nor a robin, but that is somehow an average of

the two.

For every further encounter with something bird-like, the concept will in the same

way continue to adjust itself, weakening its links to rare or spurious properties, such as

"red breast", that appear only once or twice, while strengthening its links to essential or

typical properties, such as "two legs" or "flies", that are encountered again and again.

After a while, the linking pattern of the new "bird" node will represent a prototypical

bird, with strong links to the most common bird properties and increasingly weaker

links to the less frequent ones. As a result, the child will very quickly learn to recognize

typical birds, since the activation of just a few strong links such as "flies" or "feathers"

will be enough for it to activate (and thus be prepared to perceive) all the other typical

bird features, such as "beak" or "lays eggs". But it may still have difficulty recognizing

non-typical birds such as penguins or ostriches, until it develops a specialized "penguin"

node that is linked to "bird", but still has some peculiar links of its own, such as

"swims", "cannot fly", ...

Note that the creation of nodes is recursive: a new node will be defined by its

pattern of links to whichever nodes were active at the moments of its creation, including

nodes that were themselves created in this way at an earlier stage. Thus, the "penguin"

node, if is is created after the bird node, is likely to be strongly connected to that node,

and thus inherit many, but not all of its properties. This mechanism also allows the

creation of hierarchies of nodes, producing levels of complexity. We may define the

primitive, "sensory" nodes that define the initial network as belonging to level 0 of the

hierarchy. A new node, whose input nodes consist (primarily) of level 0 nodes then

belongs to level 1. Recursively, a node whose input nodes belong primarily to level n can

be defined as belonging to level n+1.

Higher level nodes will become increasingly abstract and complex, presupposing a

whole complex of earlier, simpler concepts in order for them to be recognized. Higher

order nodes will also be more stable or invariant [Hawkins, 2004; George & Hawkins,

2005; Booth & Rolls, 1998], in the sense that since they get activation directly or

indirectly from many different input sources, they can remain activated even when the

actual input is very fragmented and variable. For example, a bird hiding in a bush so that



one moment only a beak and a leg are visible, the next moment only some feathers and a

tail, will be still be recognized throughout all the perceptual changes as a bird, since each

of these elements has built up a strong connection to the overall "bird" concept, so that

only a few of them are necessary to activate the concept.

Also note that nodes do not need to  have an unambiguous position in a hierarchy,

as their incoming links may crosscut with many different levels of the hierarchy, and as

their activation will propagate as well "upwards", "downwards", as "horizontally", thus

allowing complex feedback loops. Therefore, this model is much more general and

flexible than the traditional feedforward neural network representations, in which

activation flows subsequently from the input layer via one or more “hidden” layers to

the final output layer.

Origin of activation patterns

The present modelling methodology assumes that the network learns nodes and links

from the variations in its activation function. Intuitively, the external activation function

represents sensory stimuli, i.e. information about the world outside of the network

which is picked up by some kind of sensory apparatus and translated into activation

values for level 0 nodes. The function of the network is to become increasingly

competent in anticipating these activation patterns, i.e. given a history of external

activations, Aext(v, t), Aext(v, t-1), ... Aext(v, t-k), it should be able to generate internal

activation patterns Aint(v, t+1), Aint(v, t+2), ..., that are as similar as possible to the

external activations that will effectively follow. To achieve that, we need to assume that

the outside world is to some degree regular or ordered, although its order may only

become apparent at a high level of complexity, where patterns of patterns of patterns,

distributed over space and time, are made visible by a recursive method of analysis and

synthesis like the one we proposed. In other words, we assume that the world is

complex, but not random.

The present paper claims that the nodal growth algorithm as we have sketched is

potentially much more effective at such multilevel prediction of complex patterns than

traditional connectionist methods, which are based on the adjustment of link weights

between predefined layers of nodes. To test this hypothesis, we will need concrete

data—in the form of non-trivial activation patterns—for the method to analyse. While

the example of a child learning concepts by abstracting from the  complex sensory

stimulation that it undergoes may be very intuitive, in the present state of science we

cannot hope to get such a rich array of activation patterns. An obvious alternative is to

use the sensory input stream of an autonomous robot, but this is limited by various

engineering constraints that we at present would rather not be concerned with. A more

controllable alternative is concept learning by an agent in a simulated environment



[Gershenson, 2004], but here it is quite difficult to produce an environment of a

sufficiently realistic complexity.

However, the present methodology does not make any assumptions about the

environment or "agent-like" properties of the program that uses a nodal growth

algorithm. That allows us to apply it to various more abstract data streams. We will

classify those according to whether the data arrive sequentially or in parallel.

Sequential activation

In sequential data streams, we assume that one node is activated at a time.

An example would be an acoustic signal, where the air pressure sensed by the ear

drum changes over time. This signal is one-dimensional, and can be represented by a

single node whose activation corresponds to the strength of pressure. Yet, we know that

sound is typically experienced and conceptualized according to many dimensions: pitch,

volume, harmony, timbre, rhythm, etc. This illustrates the creation of new degrees of

freedom by the neural system [Cariani, 1997]. Mathematically, the explanation is

simple: any real function of one variable (e.g pressure as a function of time) can be

represented as a point in an infinite dimensional space by means of Fourier or harmonic

analysis. The core idea is that it is the variations over time that add variability and thus

degrees of freedom to something that, considered statically, only has a single degree of

freedom. However, sound, being continuous, is not easy to analyse by means of our

discrete nodal growth algorithm.

Another simple example of a one-dimensional signal that is decoded as

multidimensional is the electromagnetic wave that carries TV programs (or even simpler

the binary sequence with which a digital TV program is coded). The wave/code is one-

dimensional, with only intensity varying over time, but the resulting program has two

spatial dimensions, three color dimensions, a dimension of movement and several sound

dimensions. The decoding of these dimensions is preprogrammed in the TV apparatus,

though, and what interests us is a system that automatically learns to create new

dimensions when needed.

A discrete example of a sequential data stream is text. Text consists of a digital

sequence of characters (letters, numbers, punctuation marks, ...). The symbols are

chosen from a discrete alphabet. In the case of the ASCII coding, that alphabet contains

128 basic characters. Let us represent each character by a node in our network N. A text

can then be represented by an activation function: A(v,t) which is such that at each

moment t, there is one node x for which A(x,t) = 1, while A(y≠x, t) = 0. x represents the

character that is being "read" at time t. With such an activation function, our learning

algorithms won't be of much help, though, since they require that different nodes

(characters) be activated simultaneously. We can tackle that problem in two ways:

1) we can let activation of a given node decay slowly so that when A(x,t) = 1, then

A(x,t+1) = 0.9, A(x,t+2) = 0.81, etc. The word "cat", at the moment the last letter is



read, would then be represented by the activation pattern A("t",t) = 1, A("a",t) = 0.9,

A("c",t) = 0.81. This is probably not a very reliable representation, since the word "act"

would be represented by almost the same patterns, except that "c" would now be a little

more activated than "a".

2) a richer representation would associate each character's reading with a time or

position stamp, thus having different nodes for "c in first position" ("c", 1) and "c in

second position" ("c", 2). Suppose our network distinguishes 100 positions, then we

need 100 × 128 = 12800 nodes in our network.

With such a network, co-activation now becomes meaningful, and as more text is

"read", the network will first learn to expect that certain letters tend to follow or not

follow each other, e.g. that "c" may well be followed by "o", or "h", but not by "x" or

"p". This is simple link learning. However, node learning should soon learn to recognize

common morphemes, words, and phrases. These will modulate the anticipation patterns

defined by the links between level 0 character nodes, so that letters can be predicted

with better accuracy in a context where preceding, higher level words and phrases have

already been recognized. First, the network will create strong nodes that represent very

common words such as “the” or “in” followed by less common but still regularly

recurring words such as “information”, and common phrases such as “by the way”,

“this is”, “do you know”, ... The latter can be formed either directly from input

activation patterns on the character nodes, or from derived activation patterns on

previously learned word nodes.

Parallel activation

In the simplest case, we can have co-activations of several nodes simultaneously, but

without any meaningful temporal ordering. This is the case with co-occurrence data: we

know that concepts or nodes a, b, c, d... often occur together, but these occurrences are

static, without any arrow of time. For example, we may have a list of papers together

with their keywords. Suppose each keyword is represented by a node. Each paper can

then be represented as an activation pattern, activating all those keywords it contains.

However, the temporal ordering of these papers is irrelevant, as there will be no

meaningful correlation between paper n and paper n+1 where n represents their order in

the database or listing (e.g. alphabetical).

This is no problem for the Hebbian or nodal growth algorithm. Whatever the order

in which the activation patterns are presented, the algorithm will create or strengthen

links and nodes whenever the same keywords appear together. In that way, the network

should be able not only to predict which keywords are likely to follow, but to create

clusters of commonly co-occurring keywords that perhaps define research subjects,

communities and disciplines, thus producing a taxonomical ordering of papers and

keywords. This means that if you activate the network with a few keywords, it will



generate a list of additional keywords that you can expect to find at the level of papers,

collections, topics or communities of papers.

The roles of paper and keyword can be switched in this representation, with papers

corresponding to nodes, and keywords activating all papers that contain the keyword.

After the network has been trained, the activation of a few papers should lead to the

activation of the “higher order” nodes representing the keywords (or families of

commonly co-occurring keywords) that these papers have in common.

Many other examples can be given of such co-occurrence patterns that could be

meaningfully analysed by our nodal growth algorithm: e.g. books bought or borrowed by

the same customers, features shared by different animals or plants, DNA sequences

shared by the same kinds of organisms, etc.

Parallel and sequential activation

In most real processes we will get information both in parallel and sequentially. E.g.

during visual perception several features are perceived simultaneously, but these

features moreover change over time. Another example would be science dynamics, where

we can consider not only the co-occurrence of keywords or papers, but the evolution of

these occurrences over time as we compare papers published in subsequent years. For

example, we may find that a particular new research community, characterized by a

cluster of keywords and key papers, gradually emerged over a period of a dozen years,

only to split up into several more specialized communities in the following decade.

An advanced version of the nodal growth algorithm may first learn to distinguish

relatively static clusters of co-occuring phenomena, but then start to learn their

dynamics as it notes that certain patterns tend to be followed by specific other patterns.

Testing the algorithm

Up till now, we have presented the algorithm in a purely conceptual way, arguing with

the help of examples and general principles that it may potentially discover very

complex patterns in situations where other machine learning or data mining algorithms

are likely to get stuck. However, it is well possible that we have overlooked  crucial

difficulties that may keep the algorithm from functioning in practice. Therefore, we need

to test it concretely, in a situation that is sufficiently complex and realistic to convince

observers that the algorithm has some real advantages over others.

The parallel activation or co-occurrence case is probably the simplest, as it covers a

whole range of situations that have already been extensively explored by data mining

algorithms, such as various forms of clustering algorithms. This would allow a direct

comparison with the results of these algorithms. However, the problem is that the

quality of clustering is intrinsically difficult to estimate, as there is no "objective"

measure of what is a good cluster. Moreover, different algorithms will typically perform



well on different types of data, and being successful in one domain gives little guarantee

of success in another domain.

A more convincing test might be carried out in the sequential case, and more

specifically in the learning of text. Text has the advantage that it has a very clear low

level structure (letters, words), but a very complex high level structure (phrases,

sentences, contexts, stories, ...). Therefore, it is easy to start the analysis by "reading"

characters and words, but very difficult to carry it through to the higher levels of textual

comprehension. Thus, text forms an elegant challenge for a learning network as we

sketched it, allowing it to start simple and become increasingly sophisticated as it

processes more and more text. However, since there is no clear, objective measure of

textual comprehension, we need another way to measure its performance.

A general characteristic of any "intelligent" system is its capability for prediction or

anticipation [Hawkins, 2004; George & Hawkins, 2005]. The idea is that the more text

the network has assimilated, the better it should become at anticipating as yet unseen

texts. This prediction capability can be measured very easily in the following way: from

an existing text, you erase k % of the characters and replace them by question marks

(e.g. k= 50 means removing half of the characters).  A good network, like our own brain,

should be good at guessing what the erased characters are, by using the surrounding

characters that were not erased to guess the morphemes, words, phrases or contexts to

which they belong. Assume that we require a given level of accuracy in the guessing (e.g.

at least 95% of the guesses should be correct). In that case the quality of the network

can be measured by the highest number k of characters that can be randomly removed

before the guesses fall below the required level of accuracy. This allows us to compare

various networks (e.g. that have been trained using variable amounts of text, or using

different learning parameters) with other machine learning systems (e.g. Hidden Markov

models) and even with human subjects.

Conclusion

We have presented a promising new type of algorithm for the discovery of invariant,

higher-order concepts within a mass of variable, noisy data. The algorithm is novel in

that it is based on the unlimited creation of new nodes within a recurrent connectionist

network. Nodes are created to represent patterns of co-activation of existing nodes that

are not sufficiently accounted for by existing nodes. This allows the system to produce

novel concepts or degrees of freedom that capture the complex correlations over time

and/or space of the activations of different sensory elements. The strengths of the links

connecting all the nodes in the network (newly created as well as initially given) are

determined according to a Hebbian or Delta learning algorithm, thus guaranteeing a

network architecture that constantly adapts to its experiences.



The proposed algorithm can in principle be applied to any task involving learning,

discovery or data mining. We have sketched some simple applications in text

comprehension of clustering of papers and keywords, and suggested that it is equally

applicable to the more complex spatio-temporal information streams encountered by

situated agents. The next step will be to actually implement and test the algorithm on

one of these types of data, preferably comparing the quality of its predictions with

those of other machine learning algorithms.
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